
Mathematische Zeitschrift manuscript No.
(will be inserted by the editor)

Jens Hornbostel · Serge Yagunov

Rigidity for Henselian local rings and
A1-representable theories

the date of receipt and acceptance should be inserted later

Abstract We prove that for a large class of A1-representable theories in-
cluding all orientable theories it is possible to construct transfer maps and
to prove rigidity theorems similar to those of Gabber for algebraic K-theory.
This extends rigidity results of Panin and Yagunov from algebraically closed
fields to arbitrary infinite ones.

Introduction

The aim of this paper is to establish rigidity results for graded cohomology
type functors E on smooth varieties over an infinite base field k. This paper
generalizes the results of [PY] and [Ya] where the special case of orientable
theories E resp. stably A1-representable theories on smooth varieties over
algebraically closed fields have been studied.

Consider some category of schemes (spaces) S over a base scheme (space)
B together with a cohomology theory E∗ : Sop → Ab. Then we say that

E∗ satisfies rigidity if for every irreducible scheme X
χ→ B, any two sections

σ0, σ1 : B → X of the structure morphism χ induce the same homomorphism
σ∗0 = σ∗1 : H∗(X)→ H∗(B). In classical topology, the rigidity property is an
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obvious consequence of homotopy invariance of cohomology theories. How-
ever, in algebraic geometry A1-invariance does not always imply rigidity. It
only holds under certain restrictions on S and the cohomology theory E∗.
In particular, rigidity fails for K1 with integral coefficients. Rigidity results
for finite coefficients have been established for algebraic K-theory by Suslin,
Gabber, and others (see [Su1,Ga,GT]), for hermitian K-theory by [Ka,Ja1],
and for Witt groups by [Kn], [Sch, p. 208]. The rigidity theorem and one of
its corollaries in Gabber’s paper [Ga] are the following:

Theorem 0.1 Suppose that R is a henselian local ring and ` ∈ Z is invert-
ible in R, f : M → SpecR is a smooth affine morphism of (pure) relative
dimension 1. Let s0, s1 : SpecR→M be two sections of f such that s0(P ) =
s1(P ), where P is the closed point of SpecR. Then for every homomor-

phism R → F , where F is any field, the two composed maps K∗(M,Z/`) si→
K∗(R,Z/`)→K∗(F,Z/`) are equal (i = 0, 1).

The second morphism is known to be injective in many cases at least
with integral coefficients if R is regular. In particular, if F = Frac(R) and
R contains a field, this is the Gersten conjecture for algebraic K-theory as
proved by Quillen [Qu] and Panin [Pa] in this case. See Proposition 2.3 for a
proof of the Gersten conjecture with finite coefficients.

Corollary 0.2 Let M be a smooth scheme over a field k with ` invertible in
k, P ∈ M(k) a k-rational point of M , and R = OhM,P the henselization of
the corresponding local ring. Then the map

K∗(R,Z/`)
∼=→ K∗(k,Z/`)

induced by R→ k is an isomorphism.

The proof of Theorem 0.1 relies on the existence of transfer maps fulfilling
certain properties and on homotopy invariance (i.e. K∗(X) ∼= K∗(X × A1)
if X smooth) whereas the Corollary 0.2 uses moreover that K∗ commutes
with colimits. Throughout this paper we will always assume that our coho-
mology functor (also called “cohomology theory”) E commutes with filtered
colimits (as all interesting examples do) and extend the domain of E ac-
cordingly. In [Su3, p. 227], Suslin says that the above theorem should hold
for other homotopy invariant functors E having transfers for finite flat maps
satisfying “the usual properties”. A first axiomatic set of the transfers and
their required properties that yield a rigidity statement is published in [SV].
(Compare also an unpublished manuscript of Jannsen from 1995 which is
now available [Jan].) A different choice of axioms is proposed in [PY]. Panin
and Yagunov show that the axioms are satisfied for any orientable theory
over algebraically closed fields, and deduce a rigidity theorem for orientable
theories with finite coefficients. Moreover, they show that base change with
respect to an extension of algebraically closed fields is then an isomorphism.
In [Ya], Yagunov shows that these results carry over to all theories that are
representable in the stable A1-homotopy category of [V1]. Examples include
hermitian K-theory, Balmer Witt groups assuming char(k) 6= 2, and stable
cohomotopy groups. Stable A1-representability allows Yagunov to construct
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algebraic “Becker-Gottlieb transfers” with respect to a class of morphisms
Ctriv, which is rather small but still large enough to conclude. We will review
these transfers in section 1.

This paper generalizes the above results. Assuming certain additional hy-
potheses that can be checked in many cases of interest (see Corollary 0.5
below), we can get rid of the condition that our base field is algebraically
closed, construct transfers and establish the following generalization of The-
orem 0.1 and Corollary 0.2 above:

Theorem 0.3 Let k be an infinite field and let R be a henselian local ring
essentially smooth over k with field of fractions Frac(R) = F . Assume that
E = E∗∗ is a contravariant bigraded functor on the category Sm/k of smooth
schemes of finite type over k that is representable in the stable A1-homotopy
category and satisfies `E = 0 for ` ∈ Z invertible in R. Assume, more-
over, that E is normalized with respect to the field F (see Definition 1.3). Let
f : M → SpecR be a smooth affine morphism of (pure) relative dimension d,
and s0, s1 : SpecR → M two sections of f such that s0(P ) = s1(P ), where

P is the closed point of SpecR. Then the two maps1 E(M)
s∗i→ E(SpecR) are

equal (i = 0, 1).

Corollary 0.4 Let E and k be as in Theorem 0.3, V a smooth variety over
k, P ∈ V (k) a k-rational point of V , and R = OhV,P . Then

E(SpecR)
∼=→ E(Spec k)

is an isomorphism.

We will see that the proof for a general E is considerably more compli-
cated than in the special case of K-theory.

Given a representable theory E, there is a standard way to construct an
associated theory E( , `) with `2E = 0, see section 2.

The above hypotheses will hold for orientable theories, but also for Balmer
Witt groups W ∗ in certain degrees, see section 4. For example, we have:

Corollary 0.5 Let X ∈ Sm/k with k as above, V a smooth variety over
k, P ∈ V (k), and F = Frac(OhV,P ). Let also (as in Theorem 0.3) E be a
representable cohomology theory such that `E = 0 for some ` ∈ Z invertible
in F . If the map E(P2

XL
)→ E(P1

XL
) induced by one of the standard inclusions

P1 ↪→ P2 is an epimorphism for every finite separable field extension L/F
(e.g. E = MGL, Hmot, or K), then the map

E(X ×Spec k SpecOhV,P )→ E(X)

is an isomorphism. If E is represented by a commutative motivic ring spec-
trum, then it is sufficient to check the epimorphism condition for X = Spec k.

1 Recall that here and below we extend the domain of E and set, for example,
E(SpecR) := lim

→
E(Xi), as SpecR = lim

←
Xi, Xi ∈ Sm/k.
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This article is organized as follows: In section 1 we recall the definition of
Becker-Gottlieb transfers and some results from [PY] and [Ya]. Cohomology
theories with finite coefficients are introduced in section 2. Section 3 contains
the proof of Theorem 0.3 and Corollary 0.4. In section 4 we discuss for which
theories E the hypotheses of Theorem 0.3 and Corollary 0.4 hold, which will
prove, in particular, Corollary 0.5. This includes a short discussion of Witt
groups.

Notation remarks. Throughout this paper, E will always denote a bi-
graded cohomology theory which is representable in the stable A1-homotopy
category and thus, in particular, homotopy invariant.

We use the standard “support” notation for cohomology of pairs and
denote E(X,U) by EZ(X), provided that U is an open subscheme of X and
Z = X − U .

If F is a field we often write E(F ) instead of E(SpecF ).

T denotes the Tate object in the stable A1-homotopy category. ΣT de-
notes both T -suspension morphism and the suspension isomorphism induced
in cohomology. We omit grading of cohomology groups whenever it is pos-
sible. However, to make the T -suspension isomorphism compatible with the
usual notation, we write E[d] for cohomology shifted by d. More precisely, if
E denotes a cohomology theory E∗,∗ represented by a T -spectrum, we set
E[d] = E∗+2d,∗+d.

Acknowledgements This work was mostly done during several visits of the sec-
ond author to the Max-Planck-Institut für Mathematik (Bonn) and the Universität
Bielefeld. The author is deeply grateful to both the institutes for their hospitality
and perfect working conditions. We thank Ivan Panin for useful conversations dur-
ing this work and Uwe Jannsen for useful comments on a preliminary version of
this article.

1 Transfers

Denote by Ctriv a class of equipped morphisms (f, τ, Θ) where f is decom-

posed as f : X
τ
↪→ Y ×An p→ Y such that τ is a closed embedding with trivial

normal bundle NY×An/X , p is the projection morphism, and Θ : NY×An/X
∼=

X ×AN is a trivialization isomorphism. Abusing the notation we often omit
τ or Θ if the decomposition or the trivialization is clear from the context.

Following [Ya], one can construct transfer maps with respect to Ctriv.
More precisely, for any morphism (f : X → Y, τ,Θ) ∈ Ctriv of codimension d
Yagunov defines a Becker–Gottlieb transfer map (f, τ, Θ)! : E(X)→ E[d](Y ),
sometimes also denoted by (f,Θ)! or fτ! . In [Ya] the base field is assumed to
be algebraically closed. But this is not needed in the construction and neither
in the proof of the following two properties:
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Proposition 1.1 (Base change property) Consider a commutative dia-
gram of Cartesian squares

X ′
� � τ ′ //

f ′

((

g′

��

Y ′ × An

��

// Y ′

g

��
X

� � τ //

f

66Y × An // Y

where f ∈ Ctriv is of codimension d, and the morphisms τ , τ ′ are closed
embeddings such that the left-hand-side square is transversal (see [PY, Def-
inition 1.1]). Assume that Θ′ is a base change of Θ in the sense that the
square:

X ′ × Ad+n

g′×id

��

NY ′×An/X′
Θ′oo

N(g′)

��

NY×An/X ×
X
X ′

X × Ad+n NY×An/X
Θoo

(1.1)

is Cartesian. Then, the diagram:

E(X ′)
(f ′,τ ′,Θ′)!−−−−−−−→ E[d](Y ′)

g′∗
x g∗

x
E(X)

(f,τ,Θ)!−−−−−→ E[d](Y ).

commutes.

Proposition 1.2 (Additivity) Let X = X0 t X1 ∈ Sm/k be a disjoint
union of subvarieties X0 and X1, em : Xm ↪→ X (m = 0, 1) be the corre-
sponding embedding morphisms, and (f : X → Y, τ,Θ) ∈ Ctriv (codim f = d).
Setting fm,! = (f ◦ em, τ ◦ em, Θ|Xm

)!, we have:

f0,!e
∗
0 + f1,!e

∗
1 = f!.

There is a third property which will be necessary for proving our rigidity
theorem:

Definition 1.3 (Normalization) We say that a cohomology functor
E : Sm/k → Ab satisfies the normalization property for a separable field
extension K/k if for any λ ∈ K∗ the automorphism Σ−1

T λ∗ΣT : E(K) →
E(K) induced by the λ-homothety of A1

K is the identity (here ΣT : E(K)→
E

[1]
{0}(AK) is the suspension isomorphism). We call the functor E normalized

with respect to the field k if it satisfies the normalization property for every
finite separable extension of the field k.
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By [Ya, Proposition 3.3] the following proposition holds for normalized
theories.

Proposition 1.4 For any decomposition SpecK
τ
↪→ AnK → SpecK of the

morphism (id, Θ), the resulting transfer map (id, τ, Θ)! : E(K) → E(K) is
the identity.

Remark 1.5 From the proof of [Ya, Lemma 3.5], one can easily derive that
Proposition 1.4 holds for a graded theory E in a certain degree i if and only
if the normalization condition of Definition 1.3 holds for Ei. So, from now
on we call both these statements normalization property.

The normalization property is fulfilled for algebraically closed fields, see
loc.cit. In general, we have the following convenient criterion.

Lemma 1.6 Assume that the map i∗ : E(P2
K)→ E(P1

K) induced by one (and
thus all) of the standard inclusions P1

K ↪→ P2
K is surjective. Then E satisfies

the normalization property for K.

Proof As in [Ya, pp. 38–39], it is sufficient to check that the action of the
matrix d = diag(λ, 1) induces the identity automorphism on E(P1). Consider
the embeddings i0 and i1 of P1 into P2 given by mapping (x :y) to (x :0 :y)
resp. (0 :x :y). The induced maps i∗0 and i∗1 (both denoted by i∗ above) from
E(P2) to E(P1) are equal because E is homotopy invariant and H : P1×A1 →
P2 given by H((x :y), t) = ((1 − t)x :tx :y) is a homotopy between i0 and
i1. The diagonal matrix D = diag(λ, 1, 1) induces an automorphism D∗ of
E(P2). We have i0d = Di0 and i1 = Di1, hence i∗0D

∗ = d∗i∗0 and i∗1D
∗ = i∗1.

As i∗0 = i∗1 is surjective by hypotheses, the equality d∗i∗0 = i∗1 implies d∗ = id.

Any orientable theory is normalized with respect to any field, since the
projective bundle theorem E(PnK) ∼= E(SpecK)[x]/(xn+1) holds. On the
other hand, in the case of the analytic topology over R, the action induced
by −1 (i.e. diag(−1, 1)) on the real projective line RP1 = S1 is not the

identity on the fundamental group π1(RP1) ∼= Z and the same holds for the

cohomology group H1(RP1,Z).
We can rephrase Yagunov’s theorem on the existence of transfers as fol-

lows:

Theorem 1.7 Let E be a graded functor on Sm/k which is representable by
a T -spectrum in Voevodsky’s stable A1-homotopy category SH(k). Then for
every f : X → Y ∈ Ctriv there is a transfer map f! : E(X) → E(Y ), which
satisfies additivity and base change.

2 Cohomology theories with finite coefficients

We refer the reader to [V1,Ja2] for the construction of the motivic stable
homotopy category SH(k) and its basic properties. In particular, we have
a motivic spectrum Si,j : = Si−j ∧ G∧jm which is the motivic suspension
spectrum associated to the corresponding simplicial sheaf. For any positive
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integer `, the motivic sphere spectrum S has a self map of degree ` (take
the map of degree ` on S1, for instance). The homotopy cofiber of ` : S →
S is denoted by S/` and is called the motivic Moore space mod `. As in
topology, we can now define cohomology theories with integral and with
finite coefficients.

Definition 2.1 Let E be a P1-spectrum in the homotopy category of motivic
spectra SH(k). Then for every scheme X ∈ Sm/k , ` ∈ N, and i,m ∈ Z, we
set:

Ei,m(X) = HomSH(k)(Σ
∞
T X+, S

i,m ∧ E)

Ei,m(X, `) = HomSH(k)(Σ
∞
T X+, S

i,m/` ∧ E)

In particular, we have K−i,0(X, `) = Ki(X,Z/`) for the motivic spectrum
K = BGL introduced in [V1, 6.2], and the proof is the same as the one given
in loc. cit. for integral coefficients. As in topology, one obtains a long exact
sequence

...→ Ei−1,m(X, `)→ Ei,m(X)
×`→ Ei,m(X)→ Ei,m(X, `)→ ...

and one deduces:

Lemma 2.2 a) There is a natural short exact sequence

0→ Ei,m(X)⊗ Z/`→ Ei,m(X, `)→` E
i+1,m(X)→ 0.

b) Any element in Ei,m(X, `) is annihilated by `2.

Proof The exactness of a) is immediate from the long exact sequence. To
prove b), observe that by a) any `-divisible element in Ei,m(X, `) maps to
zero in `E

i+1,m(X) and thus lies in the image of Ei,m(X)⊗ Z/`.

By the definition above, if E is representable in SH(k), then so is E( , `).
Hence the following version of the Gersten conjecture also applies to theories
with finite coefficients.

Proposition 2.3 If k is infinite, the Cousin complex (see e.g. [CTHK, sec-
tion 1]) for E yields a resolution of the Zariski sheaf associated to X 7→ E(X).
In particular, if R is local and essentially smooth over k, then the map

0→ E(R)→ E(Frac(R))

is a monomorphism.

Proof Setting EZ(X) : = E(cone((X − Z) → X))) and Ex(X) : =
colimU3xEx̄∩U (U), this is established in [Ho, Corollary 2.9]. The proof given
there for KO is valid for any motivic spectrum E using (as E commutes with
colimits by assumption) the isomorphism Eη(R) ∼= E(Frac(R)) where η is
the generic point of SpecR.

Remark 2.4 Note that we can not eliminate the hypothesis that k is infinite
as done in [CTHK, Theorem 6.2.5] as we can not prove the formula in COH6
of loc. cit. for our transfer morphisms in general.
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3 Proofs

The main purpose of this section is to prove the following theorem which
implies Theorem 0.3 thanks to Proposition 2.3. Corollary 0.4 follows from
Theorem 0.3 exactly as it does in [Ga, p. 66].

Theorem 3.1 Let R be a henselian local ring over k with an infinite field
of fractions Frac(R) = F . Assume that E = E∗∗ is a contravariant bigraded
functor on the category Sm/k representable in the stable A1-homotopy cat-
egory, `E = 0, and ` ∈ Z is invertible in R. Assume, moreover, that E is
normalized (see Definition 1.3) with respect to F . Let f : M → SpecR be a
smooth affine morphism of (pure) relative dimension d, s0, s1 : SpecR→M
two sections of f such that s0(P ) = s1(P ) where P is the closed point of
SpecR. Then the two composed maps s∗0, s

∗
1 : E(M) ⇒ E(R) → E(F ) are

equal .

Proof Parts of the proof follow the one of Gabber [Ga, pp. 67-69] for algebraic
K-theory. As Gabber observes [Ga, Remark, p. 67], it is enough to consider
the case that f is of relative dimension one. We first get rid of local rings
and reduce the question to some form of the rigidity theorem for fields.
For this, denote by MF the generic fiber of M , that is the fibered product
M ×

SpecR
SpecF with respect to the canonical morphism ρ : SpecF → SpecR.

Then the maps si induce maps sFi : SpecF → MF via base change, so it
suffices to show that (sF0 )∗ = (sF1 )∗.

For sFi : SpecF → MF , we set Pi : = Im(sFi ). Since the open neighbor-
hoods of the points P0, P1 form an inductive system, the value of (sF0 )∗−(sF1 )∗

is independent of the choice of the containing open neighborhood. So, it is
sufficient to establish the equality (sF0 )∗ = (sF1 )∗ for one special affine neigh-
borhood. Setting M to be a projective closure of M and C the normalization
of the curve (M)F , we can choose an open neighborhood U of {s0(R), s1(R)}
in M such that ΩM/R and thus the tangent bundle is trivial when restricted
to U . (To find such a U first choose a desired neighborhood for s0(R) and
then deduce that it also contains s1(R) since both sections coincide on the
closed fiber.) We further set Z := (M−U)red, C

◦ := UF , and C∞ := C−C◦;
thus the tangent bundle of C◦ is also trivial.

Below we identify the invertible sheaf corresponding to the divisor D with
its image in the Picard group Pic(C,C∞) and denote it by O(D) unless any
confusion may appear. Recall that the relative Picard group Pic(C,C∞) is
by definition the set of isomorphism classes of pairs (L,ψ) where L is a line

bundle on C and ψ : L ⊗OC
OC∞

∼=→ OC∞ is a trivialization of L|C∞ . The
relative Picard group Pic(C,C∞) can be identified with H1

ét(C,O∗C,C∞). This

is true for any closed embedding of schemes C∞ ⊂ C, see [Ga, p. 67] for more
details.

The statement (sF0 )∗ = (sF1 )∗ is implied by the following two theorems:

Theorem 3.2 For C,C∞ as above and any integer ` 6= 0 coprime to charF
the divisor OC(P0−P1) is `-divisible in the relative Picard group Pic(C,C∞).
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Theorem 3.3 In the above situation, there exists a bilinear pairing

<,> : Pic(C,C∞)× E(C◦)→ E(F )

such that for any c ∈ E(C◦) and the above F -rational points P0, P1 ∈ C◦ the
equality

< OC(P0 − P1), c >= (sF0 )∗(c)− (sF1 )∗(c)

holds in E(F ).

The first theorem is similar to one proven in [Ga, Corollary p. 68] (see
also [GT,SV]).

Before proving Theorems 3.2 and 3.3, we show how to derive Theorem 3.1
from them. By Theorem 3.2, there is an element (L, ψ) in Pic(C,C∞) with
`(L, ψ) = OC(P0−P1). Then by Theorem 3.3, for any element c ∈ E(C◦) we
have: (sF0 )∗(c) − (sF1 )∗(c) =< OC(P0 − P1), c >= ` < (L,ψ), c >= 0 which
proves Theorem 3.1.

Proof of Theorem 3.2 Consider the following short exact sequence of étale
sheaves:

0→ j!µ` → O∗C,C∞
`→ O∗C,C∞ → 0, (3.1)

where C◦
j
↪→ C

i← C∞ and O∗C,C∞ is the sheaf Ker(O∗C → i∗O∗C∞).
Now we write down a fragment of the cohomology long exact sequence

associated to (3.1) in the form:

Pic(C,C∞)
`→ Pic(C,C∞)

δF→ H2
ét(C, j!µ`) (3.2)

Using the definition of C,C∞, one sees that the hypotheses of [Ga, Propo-
sition 4] are satisfied (the slightly different version of [SV] requires the ex-
istence of a good compactification here). Therefore, in this situation every
element of Pic(C,C∞) is of the form OC(D) for some D ∈ Div(C,C∞). Here
Div(C,C∞) denotes the group of Cartier divisors on C with support disjoint
from C∞. If δF (OC(D)) = 0, the exact sequence above yields the equality
D = `D′ + div(f) in Div(C,C∞) for a suitable divisor D′ and f a mero-
morphic function on C which is regular around C∞ and satisfies f |C∞= 1.
To establish that δF (OC(P0 − P1)) = 0 it suffices to show that the class of
s0 − s1 := s0(SpecR) − s1(SpecR) in the relative Picard group of M lies

in Ker(Pic(M,Z)
δ→ H2

ét(M,J!µ`)), where J : M − Z → M . In fact, the
class of P0 − P1 is the pull-back of s0 − s1 with respect to the restriction to
the generic fiber. Finally, we show, following [Ga,SV], that δ(s0 − s1) = 0.
Let Mω = M ×SpecR ω be the special fiber of M → SpecR. One has the
commutative diagram

Pic(M,Z)
δ //

α

��

H2
ét(M,J!µ`)

r

��
Pic(Mω, Zω)

δω // H2
ét(Mω, Jω!µ`),

(3.3)
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where Jω : Mω − Zω → Mω. By the proper base change theorem [SGA4,
Corollaire XII.5.5],[Mi] the map r is an isomorphism. Since the sections s0

and s1 coincide at the closed point ω, the map α is zero on the class of
s0 − s1. The statement δ(s0 − s1) = 0 follows, which completes the proof of
the theorem. ut

Remark 3.4 One can see that the claim of the proper base change theorem

H2
ét(M,J!µ`) ' H2

ét(Mω, Jω!µ`) (3.4)

is in fact a particular case of the rigidity theorem for étale cohomology.

In order to prove Theorem 3.3, we need the following auxiliary definitions.

Definition 3.5 Given a finite separable field extension L/F and a closed
embedding F : SpecL ↪→ An = AnF , we define a map trFL/F : E(L)→ E(F ) in

the following way. Choose a trivialization of the normal bundle
Φ : NAn

F / SpecL ' AnL. Then we define trFL/F = (f,F , Φ)! to be the Becker-

Gottlieb transfer map corresponding to the morphism f : SpecL
F
↪→ AnF →

SpecF .

Remark 3.6 The definition of this map does not depend on the choice of the
isomorphism Φ. To see this, recall [Ya] that the transfer map is defined by
the composition

E(L) = EL(L)→ E
[n]
L×{0}(A

n
L)

Φ→ E
[n]
L (NAn

F /L
)→E[n]

L (AnF )→ E(F ).

Now two different trivializations differ by an automorphism of AnL which in-

duces the identity map on E
[n]
L×{0}(A

n
L) by the normalization property (com-

pare [Ya, Lemma 3.6]). We do not claim that tr is independent of the fac-
torization of f .

First, we construct the desired pairing for a group P̃ic(C,C∞), which we
shall define now.

Definition 3.7 Let C be a regular projective curve over a field F . A divisor
on C is called separable if it can be written as

∑
aiDi such that the structure

morphisms Di : SpecLi → SpecF are given by finite separable field exten-
sions Li/F . A separable divisor having all multiplicities equal to ±1 is called
unramified. If f is a function such that div(f) is unramified, we also say that
f is unramified.

For a regular projective curve C with dense open subscheme C◦, and
C∞ := C − C◦, let us denote by DivS(C,C∞) ⊂ Div(C,C∞) the subgroup
of all separable divisors on C whose support does not meet C∞. We also
denote byM the (multiplicative) group of all meromorphic functions taking
the value 1 on C∞, and we use the same notation for the corresponding
subgroup of Div(C,C∞). Finally, we set

P̃ic(C,C∞) = DivS(C,C∞)/(DivS(C,C∞) ∩M). (3.5)

We now define the crucial pairing.
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Definition 3.8 For C, C◦, and C∞ := C−C◦ as above and a regular closed
embedding F : C◦ ↪→ AnF , we define a bilinear pairing <,>F : DivS(C,C∞)⊗
E∗(C◦) → E∗(F ) as follows. For a divisor D =

∑
i ai(SpecLi

xi→C◦) and
c ∈ E∗(C◦) we set:

< D, c >F=
∑
i

aitr
F◦xi

Li/F
x∗i (c),

where Li/F are the corresponding finite field extensions.

The pairing is well-defined by Remark 3.6, and the condition < OC(P0−
P1), c >F= (sF0 )∗(c)−(sF1 )∗(c) of Theorem 3.3 is satisfied by Proposition 1.4.

Proposition 3.9 For C,C◦, and C∞ as in 3.8, choose a regular closed em-
bedding F : C◦ ↪→ AnF . Let f : C → P1

F be a meromorphic function such that
div(f) ∈ DivS(C,C∞) ∩M. Then the map < div(f),− >F is trivial.

Proof First, we assume that f is unramified. Then the proof is similar to
the one of [Ya, Theorem 1.6.]. Denote by C̃◦ the open locus f 6= 1 on C◦.
Since the morphism (F , f) : C◦ → An × P1 is a closed embedding, one has
(after the natural identification A1 = P1 − {1}) the closed embedding G =

(F , f)C̃◦ : C̃◦ → An×A1. Recall that the curve U and consequently C̃◦ were

chosen in such a way that by Remark 3.10 below the embedding G : C̃◦ →
An×A1 has a trivial normal bundle. Thus, the morphism C̃◦

G→ An×A1 pr→ A1

belongs to Ctriv. Setting D = div0(f) to be the locus of f = 0 and D′ =
div∞(f) the locus of f = ∞, we now show that < D,− >F=< D′,− >F .
Consider the square corresponding to the restriction of f to its fiber over the
point {0} which is commutative by the base change and additivity properties:

E(C̃◦)
⊕x∗i //

��
fG!

##

⊕
xi∈f−1(0)

E(SpecLi)

�� ⊕(f |xi
)G!

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

E(AnF × A1
F )

��

⊕E(AnF × {0})

��
E(A1

F )
'
i∗0

// E({0}) E(SpecF ),

(3.6)

where the field extensions Li/F correspond to the points xi lying over {0}.
For a point x ∈ f−1(0), one has F|x × {0} = G|x. Therefore, the transfer

map on the right hand side becomes the sum of tr
F|xi

Li/F
, so it does not depend

on f .

The diagram shows that i∗0f
G
! =

∑
xi
tr
F|xi

Li/F
x∗i =< D,− >F . Since the

same can be done over the point {∞} and the maps i∗0, i
∗
∞ are equal by

homotopy invariance, the claim is proven.
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Remark 3.10 Any closed embedding of the curve C̃◦ in An+1
F has trivial nor-

mal bundle for the following reason: since the tangent bundles of both our
curve and An+1 are trivial, the normal bundle is stably trivial. A stably triv-
ial vector bundle on an affine curve is already trivial: a rank n bundle E on a
smooth affine curve contains a rank n−1 trivial summand, so E = On−1⊕L.
Now let q be such an integer that the vector bundle E ⊕ Oq is trivial. Since
det(E ⊕ Oq) = L, E is stably trivial if and only if L = O.

We now show that any divisor Q of DivS(C,C∞) ∩ M can be written
as a sum of unramified principal divisors admitting representatives taking
value 1 on C∞. This follows applying the lemma below to a principal divisor
Q = div(f). This completes the proof of Proposition 3.9.

Lemma 3.11 Every divisor Q ∈ DivS(C,C∞) can be written in the form
Q =

∑
i div(gi) + Q′, where gi ∈ M, all the divisors on the right-hand-side

belong to DivS(C,C∞) and are unramified.

Proof This as an easy modification of the proof of [V2, Lemma 3.16]. Let Q =∑
i±Pi, where Pi are (not necessary different) closed points on C◦. Applying

Voevodsky’s proof to each of these points, one gets equivalences Pi ∼ Q′i. All
the equivalences can be obtained by unramified functions gi ∈ M such that
the divisors Q′i ∈ DivS(C,C∞) are unramified. Since there are infinitely
many closed points of C◦ with separable residue fields, the procedure used
enables us to chose the equivalences in such a way that the supports of Q′i
are pairwise disjoint. Finally, one just sets Q′ =

∑
i±Q′i.

We thus have constructed the desired pairing for the group P̃ic(C,C∞).
Using Proposition 3.12 below, one obtains the pairing required in Theo-
rem 3.3.

Proposition 3.12 The natural map P̃ic(C,C∞)→Pic(C,C∞) is an isomor-
phism.

Proof The injectivity easily follows from the definitions. The surjectivity fol-
lows by [V2, Lemma 3.16]. Observe that the proof in loc. cit. is written for
curves having a smooth compactification, whereas over fields of finite char-
acteristic one only has regular compactification in general. Fortunately, this
condition is not essential, since the Riemann-Roch theorem implicitly used
there also holds without this assumption, see e.g. [Li, section 7.3.2].

Remark 3.13 Observe that we can not replace our proof of Theorem 3.3
by the argument of [GT, Lemma 2.2]. As divisors may have multiplicities,
this would require (unique) transfers for finite morphisms SpecL → SpecF
even when L is not a field and hence the normalization property for such L.
Moreover, the squares for which we would need base change are no longer
transversal in this case.

4 Examples

We now prove Corollary 0.5. The first claim follows from Corollary 0.4, ap-
plied to the functor Ẽ(Y ) := E(Y ×X). Observe that since E is representable,
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so is Ẽ again by using an adjoint of ∧X+ (compare [Ja2, p. 459]). Alterna-
tively, one may check this directly, compare also [PY, Proposition 2.17]. The

assumptions made on E trivially imply that Ẽ satisfies the normalization
property with respect to F .

We note that any orientable theory satisfies the projective bundle theorem
and thus this hypothesis. In particular, this applies to algebraic K-theory,
motivic cohomology H, and algebraic cobordism MGL (which is orientable
by [PY, section 6.5]).

We now prove the last claim of Corollary 0.5. Assume that E is repre-
sented by a commutative ring spectrum E . That means by definition that

we have a multiplication map E ∧ E µ→ E and a unit map S
ι→ E such that

the standard diagrams in SH(k) commute. For X,Y ∈ SH(k), consider the
cohomology external product ∧ : E(X) ⊗ E(Y ) → E(X ∧ Y ) sending the
cohomology classes α : X → E , β : Y → E to

α ∧ β : X ∧ Y α∧β→ E ∧ E µ→ E .

The coefficient group E(S0) = E becomes a graded commutative bigraded
ring with unit (the class of the unit morphism ι : S0 → E). After the natural
identifications S0 ∧X = X = X ∧S0, all groups E(X) become left and right

E-modules via the above external product, and the map E(X)⊗E E(Y )
∧→

E(X ∧ Y ) becomes a map of E-modules. The ∧-product is functorial in the
following sense. Let f : U → W . Then for every V , the following diagram
commutes:

E(W )⊗E E(V )
∧ //

f∗⊗id

��

E(W ∧ V )

(f∧id)∗

��
E(U)⊗E E(V )

∧ // E(U ∧ V ).

From now on, X and P1 are unpointed varieties, and ( )+ denotes an added
base-point to an unpointed variety. Recall that Spec k+ = S0. We drop Σ∞T
from our notation, thus identifying a pointed variety with its motivic suspen-
sion spectrum. The claim above follows immediately from the result below as
the epimorphism condition implies that the (induced by a homothety) map
d∗ in the proof of Lemma 1.6 acts as the identity.

Proposition 4.1 Let E be a cohomology theory represented by a commuta-
tive motivic ring spectrum. Let λ : P1 → P1 be a morphism which induces the
identity endomorphism λ∗ on the cohomology group E(P1

+). Then for every
X, the endomorphism Λ∗ = (λ× id)∗ : E((P1×X)+)→ E((P1×X)+) is the
identity, as well.

Proof Recall that P1
+ ∧ X+ = (P1 × X)+ and set U = W = P1

+, V = X+,
and f = λ in the diagram above.

Let us now show that the product map E(P1
+)⊗E E(X+)→ E(P1

+∧X+)
is an isomorphism of E-modules. Consider the splitting cofiber sequence of
pointed spaces S0 //P1

+hh //T , where T is the Tate object naturally iso-

morphic to the T -suspension of S0. Passing to cohomology, taking the tensor
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product with E(X+), and the ∧-product with X on the other hand, one ob-
tains the following commutative diagram of splitting short exact sequences
of E-modules:

E(T )⊗E E(X+) //

∧
��

E(P1
+)⊗E E(X+) //

∧
��

E(S0)⊗E E(X+)

∧

E(T ∧X+) // E(P1
+ ∧X+) // E(S0 ∧X+)

One can check that the map τ sending α ∈ E(T ∧X+) to τ(α) = ΣT (1) ⊗
Σ−1
T (α) ∈ E(T ) ⊗E E(X+) is an inverse to ∧. So that, the product map

E(T )⊗E E(X+)
∧→ E(T ∧X+) is an isomorphism and the Proposition easily

follows as Λ∗ = ∧ ◦ (λ∗ ⊗ id) ◦ (∧−1) = id.

Graded Witt groups W ∗ are representable by a motivic spectrum KT
(see [Ho, Theorem 5.8]). Moreover, they are independent of the weight, that
is W i,m = W i−m,0 = W i−m (see [Ho, Corollary 5.7]). Therefore, the state-
ment about Witt groups is related to the following result (where the part
concerning W 0 with integral coefficients is classical, due to Arason) which is
a consequence of [Ho].

Proposition 4.2 For any field K of characteristic 6= 2 the inclusion P1
K ↪→

P2
K induces epimorphisms

W i(P2
K , `)→W i(P1

K , `) for i = 2, 3.

Proof By section 2 and the fact that W i(K) = 0 for i = 1, 2, 3 [Ba, Theorem
5.6], we have a short exact sequence W 3(K, `) → W 0(K) → W 0(K) →
W 0(K, `) and W 1(K, `) = 0 = W 2(K, `). Combining this with the long exact
sequence associated to the homotopy fibration Ω2KT (K) → KT (P2

K) →
KT (P1

K) of [Ho, Proposition 6.2] (in particular KT is the motivic spectrum
representing Witt groups) with finite coefficients, the claim follows. ut

From this, Remark 1.5, and Lemma 1.6, the rigidity theorem follows for
W i(−, `) if i = 1, 2 and X = Spec k. But in this case the groups involved
are known to be zero by [Ba, Theorem 5.6]. If some information on W ∗(X)
was available concerning the `-torsion part, then these methods would give
more general rigidity results for Witt groups. For instance, if one knows that
W ∗(X, `) = 0, then applying [Ho, Proposition 6.2] the above methods show
that W ∗(X ×k OhM,P , `) is still 0.

We finish this paragraph by pointing out that even if the above rigidity
theorems were available for KO and W in all bidegrees, Gabber’s strategy to
deduce from this a statement similar to [Ga, Corollary 1] would not carry over
immediately. The main problem when trying to follow Gabber’s strategy with
the orthogonal group instead of GL seems to establish the good analogues
of [Su2, Proposition 1.3 and Corollary 1.6].
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