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DUALITY THEOREM FOR MOTIVES

I. A. PANIN AND S. A. YAGUNOV

Abstract. A general duality theorem for the category of motives is established,
with a short, simple, and self-contained proof.

Introduction

Recently, due to the active study of cohomological invariants in algebraic geometry,
“transplantation” of classical topological constructions to the algebraic-geometrical “soil”
seems to be rather important. In particular, it is very interesting to study topological
properties of the category of motives.

The concept of a motive was introduced by Alexander Grothendieck in 1964 in order
to formalize the notion of universal (co-)homology theory (see the detailed exposition of
Grothendieck’s ideas in [5]). For us, the principal example of this type is the category of
motives DM−, constructed by Voevodsky [12] for algebraic varieties.

The Poincaré duality is a classical and fundamental result in algebraic topology that
initially appeared in Poincaré’s first topological memoir “Analysis Situs” [9] (as a part of
the Betti numbers symmetry theorem proof). The proof of the general duality theorem
for extraordinary cohomology theories apparently belongs to Adams [1].

Our purpose in this paper is to establish a general duality theorem for the category of
motives. Essentially, we extend the main statement of [8] to this category. Many known
results can easily be interpreted in these terms. In particular, we get a generalization of
the Friedlander–Voevodsky duality theorem [4] to the case of the ground field of arbitrary
characteristic. The proof of this fact, involving the main result of [8], was kindly conveyed
to the authors by Andrěı Suslin in a private communication.

Being inspired by his work and Dold–Puppe’s category approach [2] to the duality
phenomenon in topology, we decided to present a short, simple, and self-contained proof
of a similar result for the category of motives.

Our result might be viewed as a purely abstract theorem and rewritten in the spirit
of “abstract nonsense” as a statement about some category with a distinguished class
of morphisms. Essentially, what is required for the proof is the existence of finite fiber
products and the terminal object in the category of varieties, a small part of the tensor
triangulated category structure for motives, and finally, the existence of transfers for the
class of morphisms generated by graphs of a special type (of projective morphisms).

However, rather, we preferred to formulate all statements for motives of algebraic
varieties in order to clarify the geometric nature of the construction and make possible
applications easier. This led, in particular, to the appearence of the second (co)homology
index responsible for twist with the Tate object Z(1) (see Voevodsky [12]). The only
exception is the classical Example 2.
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§1. Axioms and examples

Consider a covariant functor M : Sm/k → M from the category of smooth algebraic
varieties over a field k to a tensor triangulated category1 M that sends Cartesian products
to tensor products.

For the terminal object pt = Speck of the category Sm/k, we denote the object
M(pt) ∈ ObM by Z. From now on, we shall often use implicitly the canonical isomor-
phisms

Z⊗M(X) � M(X) � M(X)⊗ Z

induced by the natural identifications pt×X = X = X × pt in Sm/k.
Also, we assume that the category M is endowed with a fixed invertible object Z(1),

called the Tate object. We denote the n-fold product Z(1)⊗ · · · ⊗ Z(1) by Z(n) and
M ⊗ Z(n) by M(n).

For a variety X, we call the object M(X) in the category M the (orientable) motive
of X and the functor M itself the (orientable) theory of motives on the category Sm/k,
provided that the axioms below are fulfilled.

• Cancellation axiom. For every integer q and arbitrary varieties X and Y in
Sm/k there exists a canonical isomorphism

HomM(M(X),M(Y )) � HomM(M(X)(q),M(Y )(q)).

• Transfer axiom. Every projective equidimensional morphism f : X → Y of
codimension d = dimY − dimX determines a map of motives

f ! : M(Y ) → M(X)(d)[2d]

that is functorial with respect to the specified class of morphisms, i.e., f !(id) = id
and (fg)! = g!f !.

• Base-change axiom. For every transversal square (see, e.g., [8, Definition
A.1]):

X ′ g̃ ��

f̃

��

Y ′

f

��
X

g �� Y

with projective equidimensional morphisms f and f̃ , the relation2 g̃∗f̃
! = f !g∗ is

fulfilled in M.
• Consistency axiom. Let F : X×Z → Y ×Z be the morphism f × id ∈ MorM
for some f : X → Y for which the transfer is well defined. Then, the relation
F ! = f ! ⊗ 1 is fulfilled in the category M for all such f and F .

For a given theory of motives M, we define homology and cohomology groups in the
following way. Set

HMnm(X) := HomM(M(X),Z(m)[n])

and

HMnm(X) := HomM(Z(m)[n],M(X)).

For us, the most important example of the construction described above is Voevodsky’s
motives.

1In particular, we assume that the tensor structure is compatible with the shift functor in such a way
that A[q]⊗B = A⊗ B[q]. A full list of axioms for the triangulated category can be found in [6, 7].

2 Here and below g∗ et cetera denote morphisms obtained from the induced morphism M(g) in the
category M after an application of a necessary shift and the Tate twist.
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Example 1. Put M = DM−(k), and let the functor M be the corresponding motive
functor as in [10, 12]. Then M happens to be a functor with transfers for projective
morphisms and our axioms are fulfilled. The cancellation axiom was checked in this
context in [11]. Construction of the transfer and verification of other axioms belong to
the basic properties of Voevodsky’s motives (see, e.g., [10, §4]).

Example 2. Changing, in our settings, Sm/k with a category of smooth topological
varieties and taking the derived category of Z2-modules as M, we obtain, as can easily be
seen, the standard definitions of singular (co-)homology. To make the indexes consistent,
it suffices to put M(i)[j] := M [j− i], where on the right-hand side the usual triangulated
category shift is employed. Alliteratively, one may simply rewrite all the constructions
with a single index. The role of projective morphisms is played in this case by proper
differentiable maps. The transfer construction can be found in almost any algebraic
topology textbook (see, e.g., [3]). Direct verification shows that all the axioms are fulfilled
in the case under consideration. As a result we obtain a proof of the classical Poincaré
duality theorem in the spirit of Dold–Puppe’s paper [2].

§2. Statements and proofs

Our purpose in the current paper is to prove the duality theorem for orientable motives.
Namely, we establish the following statement.

Theorem 3. For every orientable theory of motives M and arbitrary varieties X,Y ∈
Sm/k with projective equidimensional X, there is a canonical isomorphism of Abelian
groups

Hom(M(Y )(i)[j],M(X)) � Hom(M(Y )⊗M(X),Z(d− i)[2d− j])

contravariant with respect to Y . Here d = dimX.

As a simple consequence of our statement, we get the following version of the classical
Poincaré duality theorem.

Corollary 4. For an arbitrary smooth projective equidimensional variety X of dimension
d, we have the canonical isomorphism

HM∗,∗(X) � HM2d−∗,d−∗(X).

Proof. Set Y = pt in the theorem. �

Within the next paragraph we assume that the categoryM under consideration admits
inner Hom-objects; i.e., for every variety X ∈ Sm/k the tensor product functor

M(X)⊗− : M → M

has a right adjoint.
For a variety X satisfying the hypothesis of Corollary 4, we consider the canonical

morphism

M(X)⊗M(X) M(X ×X)
∆!

�� M(X)(d)[2d]
p∗ �� Z(d)[2d]

and call it the motivic cofundamental class of X (see the details below). This morphism
determines the canonical duality map

M(X) → Hom(M(X),Z(d)[2d]).

Then the following statement is true.
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Corollary 5. Let M be the theory of motives considered above in Example 1. Then for
every smooth projective equidimensional variety X the duality morphism

ψ : M(X) → Hom(M(X),Z(d)[2d])

constructed above is an isomorphism.

Proof. We complete the morphism ψ up to a distinguished triangle in the category
M and denote the third vertex of the triangle by Cone(ψ). By Theorem 3, we have
Hom(M(Y )(p)[q],Cone(ψ)) = 0 for every smooth irreducible variety Y and arbitrary
integers p, q. Since the category M is weakly generated by motives of this kind, we see
that the object Cone(ψ) is isomorphic to the zero object. Triangulated category axioms
easily imply that a morphism with zero cone is an isomorphism. �

Proof of Theorem 3. In order to construct the isomorphisms mentioned in the theorem,
we need the following ingredients. First, denote by 1 ∈ HM0,0(pt) = HM0,0(pt) the
element of the (co-)homology group of the point that belongs to the (co-)homology
group of the point and corresponds to the identity morphism id: pt → pt. Note
that for a morphism of varieties f : X → Y the map M(f) induces the natural maps
f∗ : HM∗,∗(X) → HM∗,∗(Y ) in motivic homology and f∗ : HM∗,∗(Y ) → HM∗,∗(X) in co-
homology, respectively. In the case where f is projective of codimension d, the motivic
transfer map f ! induces the corresponding transfers

f! : HM
∗,∗(X) → HM∗+2d,∗+d(Y ) and f ! : HM∗,∗(Y ) → HM∗−2d,∗−d(X)

in (co-)homology. For a varietyX of dimension d, we consider the diagonal and projection
morphisms

X ×X
∆← X

p→ pt

and call the elements

[X]∗ = ∆∗p
!(1) ∈ HM2d,d(X ×X)

and

[X]∗ = ∆!p
∗(1) ∈ HM2d,d(X ×X)

the fundamental and the cofundamental class of X, respectively. Also, we define the
slant products

/ : HMi,j(X × Y )⊗HMm,n(Y ) → HMi−m,j−n(X)

and

\ : HMm,n(X × Y )⊗HMi,j(Y ) → HMm−i,n−j(X)

in the following way. For elements α ∈ HMi,j(X × Y ) and a ∈ HMm,n(Y ), set

α/a : M(X)(m) = M(X)⊗ Z(m)
1⊗a−→ M(X)⊗M(Y )[−n]

α−→ Z(i)[j − n]

for the first product, and symmetrically,

β \ b : Z(m)[n− j]
b−→ M(X)⊗M(Y )[−j]

1⊗β−→ M(X)⊗ Z(i) = M(X)(i)

for the second, provided that b ∈ HMm,n(X × Y ) and β ∈ HMi,j(Y ). (Here and below
we implicitly use the cancellation axiom.) We introduce the Poincaré duality homomor-
phisms for the case of Corollary 4, by letting

D•(−) = [X]∗/− : HM∗,∗(X) → HM2d−∗,d−∗(X)

and

D•(−) = − \ [X]∗ : HM∗,∗(X) → HM2d−∗,d−∗(X),

verbatim as was done in [8].



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

DUALITY THEOREM FOR MOTIVES 313

Then, we consider a natural extension of these homomorphisms to the general case of
the theorem. For brevity, denote the motive M(Y )(i)[j] by Y , and the index shift and
twist (d)[2d] by {d}. We construct a map

D• : Hom(Y ,−) → Hom(Y ⊗−,Z{d})
as follows. For a morphism a ∈ Hom(Y ,M(X)), let D•(a) be defined by the formula

Y ⊗M(X)
a⊗1−→ M(X)⊗M(X)

∆!

−→ M(X){d} p∗−→ Z{d}.
The inverse map

D• : Hom(Y ⊗ −,Z{d}) → Hom(Y ,−)

is given for a morphism α ∈ Hom(Y ⊗M(X),Z{d}) as follows:

Y 1⊗p!

−→ Y ⊗M(X){−d} 1⊗∆∗−→ Y ⊗M(X)⊗M(X){−d} α⊗1−→ Z⊗M(X).

Obviously, the resulting maps are contravariant with respect to the variable Y . Now,
Theorem 3 results from the cancellation axiom and the commutativity of the next two
diagrams:3

Y ⊗ Z⊗M(X)

1⊗p!⊗1

��

id

��������������

��������������

Y ⊗M(X)⊗2{−d}

�∆3
∗

��

1⊗∆!

�� Y ⊗M(X)

∆∗

��

id

�������������

�������������

Y ⊗M(X)⊗3{−d}1⊗1⊗∆!

��

α⊗1⊗1

��

Y ⊗M(X)⊗2
1⊗1⊗p∗��

α⊗1

��

Y ⊗M(X)⊗ Z

α

��
Z⊗M(X)⊗2 1⊗∆!

�� Z⊗M(X){d} 1⊗p∗ �� Z{d}

and

Y a ��

p!

��

M(X)⊗ Z

1⊗p!

��

id

�����������

�����������

Y ⊗M(X){−d}

1⊗∆∗

��

a⊗1 �� M(X)⊗2{−d}

�

∆!
��

∆2
∗

��

M(X)

∆∗

��

id

�����������

�����������

Y ⊗M(X)⊗2{−d} a⊗1⊗1�� M(X)⊗3{−d} ∆!⊗1 �� M(X)⊗2
1⊗p∗ �� Z⊗M(X).

The squares marked by � in both diagrams correspond to the following Cartesian
transversal diagram of varieties:

X ×X

∆2

��

X

∆

��

∆��

X ×X ×X X ×X
∆1

��

Therefore, these squares are commutative in view of the base change and consistency
axioms. �

3In the subsequent diagrams, M(X)⊗n denotes the n-fold tensor product and ∆i is the diagonal
morphism applied to the ith factor.
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Finally, we note that, as soon as the Poincaré duality isomorphisms have been fixed,
the transfer maps in (co-)homology can be recovered uniquely, much in the same way as
in the classical algebraic topology. Namely, the following is true.

Proposition 6. For projective equidimensional varieties X,Y ∈ Sm/k and a morphism
f : X → Y , we have:

f! = DY
• f∗D•

X and f ! = D•
Xf∗DY

• .

Here DX
• and DY

• denote the Poincaré duality isomorphisms from Corollary 4 applied to
the varieties X and Y , respectively.

Proof. The first identity can easily be derived from the relation f∗(α\[X]∗) = f!(α)\[Y ]∗,
which, in its turn, follows from the commutativity of the diagram

M(X)⊗M(X)

1⊗f∗

��

α⊗1 �� Z⊗M(X)

1⊗f∗

��
Z

p!
X ��

p!
Y ����

��
��

��
� M(X)

�
Γf
∗

��

∆X
∗

�������������
M(X)⊗M(Y )

α⊗1 �� Z⊗M(Y )

M(Y )
∆Y

∗

��

f !

��

M(Y )⊗M(Y ).

f !⊗1

��

(Here all the shifts and twists are omitted for simplicity.) The square marked by � is
induced by the transversal graph diagram of the morphism f :

X
Γf

��

f

��

X × Y

f×id

��
Y

∆Y

�� Y × Y

Hence, it is commutative. The commutativity in all other diagram parts is obvious. The
second identity can be proved in a similar way. �
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