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Throughout the last decade, Grassmannian complexeshave been playing an impor-
tant role in the investigation of the homology of general linear groups. (See, for
example, [5] and also [6], where complexes similar to Grassmannians play a cru-
cial role) It can be explained by both their quite geometric structure (these are
complexes constructed by considering rational points of an open subset of Grass-
mannian variety over given field) and the fact that their homology is a coproduct of
the relative homology of GL,,’s. The natural generalization of Grassmannian com-
plexes are bi-Grassmannian complexes (G (x, *)). These are also being used rather
widely in research related to the theory of motivic cohomology and polylogarithms
(see[2]). However, their homology was still uncalculated.

Thefollowing conjecture was formulated by A. Suslin several yearsago. Let F'
be an infinite field and G (*, *) be bi-Grassmannian complex over F'. Then

H(G(x,0) = [ Hicgpa(GL(F)).
0<p<(k-1)/2

Subsequently, Suslin found that this conjecture doesn’t hold for homology with
integral coefficients.

This paper is devoted to the proof of this assertion with rational coefficients.

Also, we proveasimilar formulafor atruncated complex consisting only of the
several bottom rows of bi-Grassmannian complex up to the nth one. Thisformula
isvalid in the case where n! isinvertible in a coefficient ring.

I'd like to thank Professor A. Suslin who introduced me to this problem and
gave alot of very valuable advice during my work.

* Supported by grant MOG 300 from the International Science Foundation.
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1. Definition of Bi-Grassmannian Complexes

Consider aninfinitefield 7. Denote by Gr(p, ¢) the set of all planesof dimensionp
in FPT4, Denote by G(p, q) the subset of Gr(p, q) consisting of planesV C FP*4
defined by the following equivalent conditions:

(a) V intersects any coordinate plane of codimension < p properly.
(b) Theintersection of V' and any coordinate plane of codimension p isO.
(c) If m: FP™2 — FP isany coordinate projection then the image of V' coincides
with FP,
Let us verify the equivalence of these conditions.

(b) < (c) Thereisan one-to-one correspondence between coordinate projections
FPt4 - FP and the coordinate planes of codimension p: 7 <> W = Ker(rw).
On the other hand, we have dm= (V) = dimV — dim(V N Ker(rx)), therefore
(V) =FP s VNW=0.

(a) = (b) Evidently.

(b) = (a) Let U be a coordinate subspace of codimension k£ < p. Chooseon U
p — k coordinate functions 1, o, . .., x4 and let

W={ueU:zi(u) =x2(u) = = zp_p(u) = 0}.

Then W is a coordinate subspace in FP*4 and codim W = p. Therefore, 0 =
VAW =V NU|g=o, implies

dm(VnU)<p—k=p+(p+q—k) —(p+q)
= dimV +dimU — dim FP*4.
Thus, the intersection of V' and U has the right dimension. i

Introduce two families of maps between the sets G (p,q). The first ones are
projection operatorsd;: G(p, q) — G(p, q¢ — 1), where d; isthe projection onto the
ith coordinate plane of codimension 1. The other family consistsof the ‘intersection
operators’' 0;: G(p,q) — G(p — 1, q). More precisely, consider the linear maps

prra-1 &y potq T pria-1
gi(xla s a$p+q—l) = ($la sy L1, Oa Liy- - 7xp+q—1)a
Ti(T1, - Tptg) = (T2, -+, Tim1, Tit 1, -+, Tptg)-

IfV € Glp,g), thensat di(V) = mi(V), 8,(V) = & (V).
The previous discussion shows that these operators are well-defined.

LEMMA 1.1.

di 10, ifj<i
0jd; = A ] Z
di0j+1, 1fj >
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Proof. Let W = 0;d;V, then W = & *(m(V)) and for any w € W there

existssuchy € V so that

(wla <oy W1, 07 Wy - - - 7wp+q—2)

= (yla e Yi—1, Y1, - ayp-i-q) (f] (’LU) = 7rl(y))

The last equality implies that

y; =0, if j<i;
Omitting y; in the vector y in the first case or y;,1 in the second one, we get a
vector z such that £;(z) = y (respectively, ;1(z) = y). On the other hand, we
have ;_1(z) = w(mi(z) = w), thereforew € m;_1(&; H(V)) (w € m(&;14(V))),

i.e 0;di(V) C di—10;(V) (resp. 0; d;(V) C d;0;41(V')). But dimensions of these
spaces are the same, therefore, both inclusions are equalities. O

Further, we will denote by A a commutative ring with unit. We often denote the
groups H(...,A) by H(...). We aso will denote by G(p,q) a free A-module
A[G (p, q)] generated by elements of G(p, ¢). Supply the bigraded module G/(x, *)
by two operations

&:G(p.q) » Glpg~ 1), d=Y (-1)'d

and

0:G(p,q) > Glp—1,q9), 0= Z(_l)iaia

where d; and 9; are induced by the corresponding maps on G (p,q).

LEMMA 1.2. Thefollowing equalities hold: d? = 0,0% = 0,d0 = —dd.
Proof. We will verify only the last one. The others can be checked in the same
way, using the fact that 9; and d; satisfy the simplicial relations.

p+q—1p+q

od = Z Z(—l)iJrj@jdi
j=1 i=1
= > (VPdoia+ Y, (1) diag;
1<i<i<pt+q 1< <i<ptq
p+q—1 p+q p+q-1 i

= Z Z (_1)i+jfldi8j+ Z Z(_l)i+j+ldiaj - —dd. O

i=1 j=i+1 i=1 j=1
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DEFINITION 1.3. Wecall the following bicomplex G (x, x) the * bi-Grassmannian
complex’.

G(0,1) -4 G(0,2) -2 G(0,3) L — ...

Here differentials d and 0 are defined as above. Further, we fix someinteger n > 0
and consider the n-truncated bi-Grassmannian complex G"(x, ) consisting of
rows of G (x, x) from the Oth up to the nth one.

Now we can formulate the main result of the paper.

THEOREM 1.4 (The Main Theorem). Let F' be an infinite field, and G™(x, ) be
the n-truncated bi-Grassmannian complex over F'. Assumethat n! isinvertiblein
A. Then

Hp(G™(#,%),A) = [ Hi-2p-1(Gln—2,(F),4).
0<p<n/2

COROLLARY 1.5. In the same notation,

Hi(G(%,%),Q) = [] Hy 2, 1(GL(F), Q).

0<p

Thebicomplex defined above being quite geometrical isabsolutely inconvenient
for any calculations. In the next section, we introduce some algebraic objects and
a purely algebraically defined bicomplex which is quasi-isomorphic to the bi-
Grassmannian complex.

2. Some Auxillary Objects

Let A = (vy,v2,...,v,) be am x n matrix over an infinite field ' and let
k < min(m,n) beanonnegativeinteger. We will say that A is W (k)-matrix if any
set of min(m,n) columns of A containing the columnsv,, x.1,v, k12,...,0y iS
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linearly independent. If such a matrix is a W (0)-matrix, then we say that it has
columnsin the general position. Note also that if m > n, then A isa W (k) matrix
iff the columns of A are linearly independent (so that, in particular this condition
does not really depend on k).

For any k& < min(p, q) set WP®)(p,q) to be a free A-module generated by
al p x ¢ W (k)-matrices. Consider a complex W P*)(p, x) having the modules
WP (p, q) indimensions ¢ > p and 0 elsewhere. A differential operator d(*) is
given by the formula

d®O:wP®(p,q) - WP (p,q - 1),

q—Fk
d(k)(A) = Z(_l)i(vla'027 s 77/)\i7 s 7vq)-

=1

The general linear group GL,(F) actson W P*)(p, q) by left multiplication. This
action commutes with the differential d*) and gives each group W P%)(p, q)
a structure of a left GL,-module. Therefore, we can consider a factor complex
GL, W P%)(p, ). Thereis a canonical morphism of complexes

Pk’ GLy 41 W P®) (p + &, *)[k] —GL, W PO (p, x)

given asfollows. In each orbit U of action of GL ;. on the basis set of the module
WPH) (p + k,q + k) (the set of dl (p + k) x (¢ + k) W (k)-matrices), we can
choose an element having the form

* I
Moreover, it's clear that the GL ,-orbit of A/ depends only on U, so that we can
define amap ¢, using the formula ¢, (U) = M mod GL,,.

THEOREM 2.1. The map ¢y: a1
quasi-isomor phism.

WPH (p + k,«)[k] = o, WPO(p,+) isa

p+k

LEMMA 2.2. Denote the complex

0 WP (p 1k k) &2 & Wwp®p £k p k)

by R*) (p+k, ). This complexiscyclic up to dimensionp + k — 1 and the complex
WP®) (p+ k, )[1] isafree GL,4-resolution of the complex R*) (p + k, x).
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Proof. Obviously, GL,,-modules W P*)(p + k,q) are free provided that
q > p + k. Thus, we should just check that the sequence

0« WPH® (p+k k) ﬂ ﬂwp(k)(p+k,p+k) &

(k) (k)
WPk p+k+1) &

isexact. Letw = Xja;(vyj, ... ,vq5) € WPHE) (p+Fk,q) beacycle. Sincethefield
F isinfinite we can choose a general enough vector vg such that

Yy = —Zaj(vo,vlj, oy Ugj) € WP(k)(p+ k,q+1).
J

Then
dy = Zaj(vlj,... ,qu) + Zaj
J J

q—k
X Z(—l)”’l(vo,vlj,...,1/)}]-,...,vqj) = w. O
i=1

Proof of Theorem2.1. Consider amap v: WP (p, q) — WP®) (p+k,q+ k)
given by the formula

M 0
M — .
(% 1)

We want to show that this map induces an isomorphism

ve: Hi(oL, WP (p, %)) = Hik(oL,,, WPH (p + k, *)).
To do so, note that the same map -~y also defines a homomorphism of complexes
v:RO(p, ) — R (p,)[k]. Furthermore, the groups GL,, and GL, act on
R and R(¥), respectively, and the map -y is compatible with the group embedding
GL, < GL,. Thus, v induces a homomorphism of spectral sequencesy: £ —
E0, k], where E (resp. E) is a hyperhomology spectral sequence corresponding
to the action of GL,, on R (resp. GL,, 1 on R()).

E;Lnn = Hm(GLP7 R(O) (p7 n)) = Hm+n(GLP7 R(O> (p7 *))7

Er = Hu(GLy ik, B®) (p+ k,n)) = Hopyn(GLysk, RW) (p + k, %)).

Lemma 2.2 showsthat the homomorphism under consideration coincides with the
induced map on E°°-terms

vl Ef® = Hy(GLy, RO (p,+)) = Hia(eL, WP (p, %))
— Hippra(oL,,WPP (p + &, #))

~ Hi 1 (GLyyr, R (p + K, %)) = E -
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It's sufficient now to show that -y induces an isomorphism on E*-terms. Namely,
let us show that for n < p

Hy(GLy, RO (p,n)) = Hp(Gly—yp) = Hypy(GLyyr, R® (p + kyn + k).

The group GL, , . actstransitively on the canonical basisof W P (p + k,n + k).
The stabilizer of the element (ep—n11, €p—n+2, - - -, eptk) iSthe affine subgroup

GL,, O
Affy i & ( P )
* In+k

Using Shapiro’slemma(see, for example, [1]), weget anisomorphism H,,, (GL,, 1,
R®)(p + kyn + k)) =~ H,,(Aff,_, .44), but the Theorem 1.11[5] asserts that
this group is isomorphic to H,,(GL,_,,). (Setting £ = 0, we have H,,(GL,,
RO (p,n)) ~ H;y(GLp_p).) It is easy to verify that the resulting isomorphism
H,(GL,, RO(p,n)) ~ Hp(GLyyr, R®) (p + k,n + k)) isinduced by the map
~. The isomorphism of El-terms of the spectral sequences gives the required
isomorphism on the limits. Since ¢,y = id and y is a quasi-isomorphism, we
concludethat ¢, isa quasi-isomorphism aswell. O

Introducearight action of the symmetric group X, onthe complex W P*) (p, «).
Let

v=(vg,... » Ug—k> Vg—k+1s - - - ,Uq) S WP(k)(p, q) and o€ Xp.

We set

vo = ('Ulv <o Ug—k> Vg—kto-1(1)) Yg—k+to-1(2)7- - - 7'Uq—k+a*1(k))'

Evidently, this action commutes with the |eft action of the group GL,,. We will say
that vectors vy 441, vg—k+2, - - - , g @€ 0n the right-hand side of the matrix v and
sometimes separate these vectors in formulas by the sign ‘|'. Note that the group

Y, acts exclusively on the right-hand vectors, whereas the face operators 82.('“) act
only on vectors on the left-hand side. This allows us to consider factor complexes
WP(k) (p7 *)Ek and GLPWP(k) (p7 *)Ek-

LEMMA 2.3. If k! isinvertiblein A, then the map ¢, induces a canonical quasi-
isomor phism

be oL, WPE (p+ k%), [K] = oL, WP (p, %).
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Proof. One can easily seethat if g € o, ,WP® (p+ k,q+ k) and o € 5,
then ¢ (g) = ¢r(go). Therefore, the following diagram commutes

oL, WPP (p + k%) [K] e oL, WP (p, )

bx
GLp+k.WP(k) (p+k, %)y, [k] — GLPWP(O) (p, %),
The second row is the result of application of X- coinvariant functor to the first
one. This functor is exact in the category of A-modules because H;(%x,A) = 0,
providedthat ¢ > O (see[1]). Theorem 2.1 tells usthat ¢, isaquasi-isomorphism.
Therefore, ¢, isaquasi-isomorphism too. O

From now on, we assume that n is a fixed honnegative integer and that n! is
invertible in thering A. Set

S q) WPrP(n,q)s, . 0<p<n,p+q>n,
’ 0, otherwise.

Consider abigraded module S (x, «) which has S(p, ¢) indimension (p,q) if ¢ > n
and 0 elsewhere. Supply it by two operatorsd and 9, whered: S(p, q) — S(p,q—1)
isinduced by the differential operator d("—?) above and the operator 9: S(p, q) —
S(p — 1,q) isgiven by theformula 0 = 247" (—1)!9;, where

di(vy, . .. a”p+q—n|vp+q—n+1a e a”q)
= (Ula s 767;7 cee avp+q—n|vp+q—n+la <oy Ugy Ui)'
LEMMA 2.4. S(x,x) isa bicomplex.
Proof. We have to verify that 9> = 0,d0 = —od and d> = 0. We will

check the first equality. The other ones can be checked in the similar way. Let
z = (v1,v2,...,9¢) € S(p,q). We have

) g+p—n-1 ) g+p—n )
8 (:U) = Z (—1)l8i Z (—1)](7)1,...,7/)\]',... | ...,vq,vj)
=1 Jj=1
= Z ((—1)i+j(1)1,...,i)\i,...,i)\j,...|...,Uq,2)j,2)i)

1<i<j<g+p—n

(=) g, By By , Vg, V3, v5)) = 0. O
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Let us come back to the bi-Grassmannian complexes. We are going to con-
struct a quasi-isomorphism between g, S(*, ) and the bi-Grassmannian complex
G™(, ). First, consider amap ¢: W PO (p,p + ¢q) — G(p,q)

allr ... al,p_m
(2
apl --- Gpptq
= [planewith basis (a11, ..., 01p4q),- -, (Ap1, - -+, Qppiq)]-

(Recall, that WP (p, p + ¢) is generated by matrices having columns in general
position.) One can easily seethat this map v defines an isomorphism

¥
oL, WPO(p,p+q) = G(p,q).
Combining it with ¢, we get amap:

5

P
oL, WP (p,p +q) = G(p,q).

6L, S(p,n +q)

PROPOSITION 2.5. The composition map ¢.,,_, defines a quasi-isomorphism
of bicomplexes g, S(*, *)[0,n] — G™(*, *).

The proof is straightforwardly implied by Lemma 2.3 and will be omitted.
The previous proposition shows that we can cal culate the homology of gL, S(x, )
instead of the homology of the complex G (x, ). Thefollowing sectionis devoted
to this calculation.

3. Proof of the Main Theorem

LEMMA 3.1. Ifi > 0,¢q > n, then H;(GL,,, S(p,q)) = 0.

Proof. Thegroup S(p, q) hasacanonical basis consisting of the orbits of action
of 3,_, onn x ¢ W(n — p)-matrices. The group GL,, acts on the canonical basis
of S(p, q) by permutations. In each orbit 3 of its action, we can choose an element
which can be presented by the matrix

aig ... aiq—p 1 0 ... 0

ay ... azqp O 1 ... 0

apl ... Gpg—n 0 0 ... 1
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Shapiro’'s Lemmartells us that

Hi(GLy,S(p,q)) =~ [ Hi(StabAp).
al orbits

But for any 3, Stab Az isisomorphic to a subgroup of ¥,,_,. Since the order of
thisgroup isadivisor of n!, we conclude that each group H;(Stab Ag) istrivial. O

COROLLARY 3.2. The natural map
H*(GLTL7 Hn+1S(p, *)) - H*(GLnS(p7 *))[TL + 1]

is an isomor phism.

Proof. Consider two hyperhomology spectral sequences of GL,, with coeffi-
cientsin the complex S(p, *). The E2-term of thefirst spectral sequenceis concen-
trated in the p 4 1th column and has the form Eﬁp+1 = H|(GL,,, H,11(S(p, *))).

The E-term of the second one is concentrated in the Oth row and has the form
EY = Ho(GL,, S(p,1)) =aL, S(p,1) (I > n). Computation of the £2-term gives
the assertion of the corollary. O
LEMMA 3.3. For any 0 < p < n the sequence

0+ S(p,0) < S(p,1) < ---« S(p,n) < S(p,n+1) < ---

is exact.
Proof. It followsfrom Lemma?2.2 and exactnessof the X,,_,-coinvariant func-
tor in our conditions. 0

Let usintroduce a bicomplex S(x, ) given asfollows:

0 d d

S(n,0) 24— S(n, 1)

_— o

0 Stn—1,1) 2 — ... S(n—1,n)
| |
0 o % S(n-2,n)
0 S(0,n)
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The differentials d and 0 are defined here in the same way as in the bicomplex
S(x, *). There is a canonical morphism of bicomplexes S(x,*)[0,1] — S(x, *)
induced by the differential d. Using Lemma 3.3, it is easy to verify that thismap is
aquasi-isomorphism. Thisfact, together with Corollary 3.2, givesusthe following
proposition:

PROPOSITION 3.4.

H. (6L, S (%, %))[1] ~ Hy(GLy, S(*, %)) O
THEOREM 3.5. For any ¢ < n the complex
d G} )

isacyclic up to dimensionn — 1.
Proof. Consider some fixed ordered set V' = {v1,...,v,} of linearly indepen-
dent vectors. Let Cy (p) be the submodule of S(p, ¢) generated by matrices

(00*1(1)700*1(2)7 s 7,00*1(11))7

wherev; € V and o € X,. Since the face operators d; change only the order of
columnsin amatrix, we can rewrite the complex S(x, ¢) in the form

V={vq,v2,...,uq}
v, linearly independent

All summands on the right-hand side are isomorphic to each other. It is sufficient
to verify that the complex C\y, (x) isacyclic for someset V. Let T%(p) be the set of
all ordered subsetsof {1, ..., ¢} having cardinality p. Consider the complex

DY = (AT (q)] -% AT (g — 1)] L - - Ao (1)) - ),

whered({z1,...,2,}) = ZF_ (-1){z1,...,Zs,...,x,}. Obviously, Cy (x)[n —
q] ~ D¥,whereq = #(V). Letusprovethat H,D{ = Ofor p < ¢. Wewill makean
inductionong. Thecaseq = listrivial. Assumethat H,D? = Oforp < ¢ < k—1.
Consider the following filtration on the complex D,

Set F;DF to be a free A-module denerated by al elements {z1,...,z,} €
T*(m) satisfying the condition: if 1 € {x1,..., 7}, then 1 = z; with 1 < i < [,
in particular, Fy is generated by al subsets which don't contain 1.

Theterm F};,_, D, of factor filtration is generated by sets

{mla ce T, 1, Li+1y--- amm}-
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In the factor complex Fl/l,le operators d; are trivial for ¢ < [, so we have a
canonical decomposition

Fy D= [ DI
Th=1(1-1)

Using the induction hypothesis, we get H,F,;,_D* = 0 for p < k. Consider a
spectral sequenceof thefiltered complex converging to the homology of D* / Fo D,
Wehave B}, = Hym(F,;—1D"). But asjust was proved, it is O for I +m < k.
Consider now along exact sequence:

-+ — Hy 1(D*/FoD*) — H,(FoD*) % H,(D*) — H,(D*/FoDF) — - .
One easily checks that the inclusion FoD* — D* is homotopic to 0 and, hence,
the above map « istrivial. Thus, H,(D*) — H,(D*/FoD¥) for p < k and since

H,(D*/FyD*) = 0, we conclude that H,(D*) = 0. This completes the proof of
the theorem. 0

LEMMA 3.6. Letz € S(n,q),0< ¢ < n.If 0z = 0thendz = 0.
Proof. Thereisahomomorphisma: S(n —1,q) — S(n,q — 1)

a((vi,v2,...,v9-1]vg)) = (v1,02,...,04-1)
satisfying the formula: a0 = d. i
PROPOSITION 3.7.

H.(GLn,S) = [[ H.(GLyKer(S(n,j) — S(n—1,7))[~n — J

0<j<n

Proof. Denote Ker(S(n, j) 9, S(n —1,7)) by K(j). Thereisanatural map
between the complex

0 K(0) <& K1)+~ - <L K(n)

and S[n, 0] induced by 9. Theorem 3.5, shows this map is a quasi-isomorphism.
Using Lemma 3.6, we see that the differential of the complex K (x) is trivial.
Because of that, H.(GL,,, S) = ogj<n H.«(GLy, K(j))[—n — j]. O
LEMMA 38. Forany0O< p,g<nandp+gq>n

H,.(GL,,S(p.q)) ~ H*(GLn—q)
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Proof. Since ¢ < n, the group GL,, acts transitively on the canonical basis of
S(p, q). Shapiro’s lemma tells that the homology under consideration equals the
homology of the stabilizer of an arbitrary basis element. But the stabilizer of the
typical element (e, g1, €n—g+2, - -, €n) hastheform

Glyy O 0
Stab = k Ip+qfn O ,

where f]n,p C GL,,, is a subgroup of permutation matrices. Using Theo-
rem 1.11 [5] and the fact that the group X,,_, doesn’t have homology except
Hpy, weobtain H, (Stab) ~ H,(GL,,_). O

LEMMA 3.9. Let 0 < p,q < nandp + ¢ > n. Then the map
0. Hy(Glp—q) = H.(GLy, S(p,q)) = H.(GLy, S(p — 1,9)) = Ho(GLp—q)

istrivial if p + ¢ — n iseven and coincides with the identity map otherwise.
Proof. The map 9, can be rewritten as 9, = X(—1)%0;., where 0;, is the
map between homology groups induced by the ith face operator. It is sufficient to
prove that 0;, isthe identity map. Consider the category of pairs (group, module).
The isomorphism given in the previous lemmais induced by the morphism (4, u),
where i is the canonical embedding and u(1) = (en—g11,---,€n)x,_,- The map
0; actson the frame (e;,—g+1, - - - , €,) @S SOme permutation matrix c. This matrix
commutes with i(GL,—). Therefore, we have (aia 1, cu) = (i, cu). But inner
automorphisms act trivially in homology so we get an equality (i, u). = (i, au).
which compl etes the proof. i

PROPOSITION 3.10. For any 0 < j < n, we have

0, jisodd

Hi(GL,,K(j)) =~ )
Kl () {Hk(GLn_j), otherwise

Proof. Let us consider two hyperhomology spectral sequences of GL,, with
coefficientsin S(x, 7). Thefirst one has the form

F2 =E>° =
h tk { 0, otherwise.

The second one has the first term E}. = H,,(GLy, S(r, j)) ~ H,(GL,_;) and the
differential d* has the form (Lemma 3.9)

1|0 if r+7—niseven
| id, otherwise.
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Therefore,

Evoo _ EZ . HP(GLnaS(naj)) = Hp(GLn—j)a j even, r=n
pr = Lpr = .
0, otherwise. O

Proof of Theorem 1.4. Consider the following chain of isomorphisms

(prop. 3.10) .
I Hei(GLpy) = II Hij(GLn K(3))
olgszsg 0<isn

(prop. 3.7) — (prop. 3.4)

(prop. 2.5) n
2 Hyy1(G™(x, %)) o

Now we consider the behavior of truncated bi-Grassmannian complexes for
different values of n. (Up to the end of the paper, any object related to the complex
G™ will be supplied by superscript 7.)

THEOREM 3.11. For any n > 0, the following diagram commutes.

T Hi-2(GLn—2)
0<ign/2

[I  Hi-2i(Glnyi-z) —— Hea(G"H(x, %))
0<i<(n+1)/2

Hp11(G" (, %))

Here the right vertical arrow is induced by the embedding of bi-Grassmannian
complexes and the left one by the natural embeddingsGL,, 2; < GL,, 11 2.
Proof. Shapiro’slemmaimplies that the map induced by the inclusion

A K"(n—k) — K" (n—k) (A(A) = <A>>

makes the diagram

H;(GLg) H;(GLy, K™ (n — k))

|

H;(GLjy1) — H;i(GLyy1, K" (n — k))
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commutative. The map A can be extended to the map of bicomplexes 5" N
S"*Y1,0]. Consider another map of these bicomplexes S - §"*7[0, 1] given
asfollows. For A € S"(p, q) set

A 0
p(A) = | e 5 p g+ 1),
0 ... 01
. =N —=n+1
Onecaneasly seethatthemap s: S° — S 7[1,1]
a1 ... QGlptqg—n 0 a1p+q—n+1 --- 0Glg
A
anl ... Oppiqg—n 0 anpt+q—n+l --- Ong
o ... 0 1 0 ... 0

cS" M p+1,¢+1)

gives achain homotopy between A\ and .

The map 1. can be extended to the map of resolutions S —% $"+1]0, 1] and,
finaly, we have a commutative diagram of bicomplexes:

e, S"[0,n]

|

6L 8" PO, + 1] —— G

GTL

whose rows are quasi-isomorphisms. (See Proposition 2.5.) O

Theorem 3.11 shows that we may really pass to direct limits on »n and deduce
Corollary 1.5 from Theorem 1.4.

Asanimmediate application of Theorem 3.11, we can also obtain the following
case of the stabilisation theorem for the linear groups (see [3]). Let us assume that
(n + 1)! is invertible in the coefficient ring A. Consider the natural embedding

G" — G™*+1. This map gives us an isomorphism in homology groups up to degree
n—1

Hk(GnaA) = Hk(Gn+1aA) (k < n)
and an epimorphism

Ho(G™,A) — Hy (G, A)
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COROLLARY 3.12. Themap Hy(GL,,,A) — Hy(GL,+1,A) induced by the nat-
ural embedding GL,, — GL, 11 isanisomorphismif k£ < n and epimorphism if
k = n, provided that (n + 1)! isinvertible in the coefficient ring.
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